29,240 research outputs found

    Simulation of interaction Hamiltonians by quantum feedback: a comment on the dynamics of information exchange between coupled systems

    Full text link
    Since quantum feedback is based on classically accessible measurement results, it can provide fundamental insights into the dynamics of quantum systems by making available classical information on the evolution of system properties and on the conditional forces acting on the system. In this paper, the feedback-induced interaction dynamics between a pair of quantum systems is analyzed. It is pointed out that any interaction Hamiltonian can be simulated by local feedback if the levels of decoherence are sufficiently high. The boundary between genuine entanglement generating quantum interactions and non-entangling classical interactions is identified and the nature of the information exchange between two quantum systems during an interaction is discussed.Comment: 14 pages, 4 figures; invited paper for the special issue of J. Opt. B on quantum contro

    Dynamically generated baryon resonances

    Full text link
    Identifying a zero-range exchange of vector mesons as the driving force for the s-wave scattering of pseudo-scalar mesons off the baryon ground states, a rich spectrum of molecules is formed. We argue that chiral symmetry and large-NcN_c considerations determine that part of the interaction which generates the spectrum. We suggest the existence of strongly bound crypto-exotic baryons, which contain a charm-anti-charm pair. Such states are narrow since they can decay only via OZI-violating processes. A narrow nucleon resonance is found at mass 3.52 GeV. It is a coupled-channel bound state of the (ηcN),(DˉΣc)(\eta_c N), (\bar D \Sigma_c) system, which decays dominantly into the (η′N)(\eta' N) channel. Furthermore two isospin singlet hyperon states at mass 3.23 GeV and 3.58 GeV are observed as a consequence of coupled-channel interactions of the (DˉsΛc),(DˉΞc)(\bar D_s \Lambda_c), (\bar D \Xi_c) and (ηcΛ),(DˉΞc′)(\eta_c \Lambda),(\bar D \Xi_c') states. Most striking is the small width of about 1 MeV of the lower state. The upper state may be significantly broader due to a strong coupling to the (η′Λ)(\eta' \Lambda) state. The spectrum of crypto-exotic charm-zero states is completed with an isospin triplet state at 3.93 GeV and an isospin doublet state at 3.80 GeV. The dominant decay modes involve again the η′\eta' meson.Comment: Talk presented at N*2005, 10 pages, 1 figur

    Seeing is Believing: Dynamic Evolution of Gene Families

    Get PDF
    Department of Integrative Biology, Center for Computational Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712Supported by National Science Foundation Grants IOS- 0843712 and IOS-1354942 (to H.A.H.) and DBI-0939454 for the BEACON Center for the Study of Evolution in Action.Integrative Biolog
    • …
    corecore